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Abstract We Mnsider power spectra for fluctuating quantities at acritical point, P(w) u~o-p, 
where (D is determined by the dynamic exponent t and static exponeats specific la the quantity 
considered. From the magnetintion spectra o b t a i d  with simulations, i is found to be 
2.13 5c 0.03 for the two-dimensional Glaubx kinetic king model, hence in a m r d  with recent 
Monte Carlo reiexational studies, but at odds with those obtained by series expansion and 
damage spreading methods. Excellent dynamic fiNB-size scaling for s y s m  sizes L = 10 to 
128 supports our estimate. 

At the critical point of a second-order phase transition, the correlation length e generally 
diverges with the system size, L. In parallel to this static behaviour is the increase of 
the correlation time t - v ,  where z is the dynamic exponent. This is the well known 
phenomena called critical slowing down [l]. While the divergence of 6 arises from 
singularities of the free energy, r and z can only be determined from the dynamics [l], 
such as that described by a Langevin or a master equation. That the dynamics are much 
harder to solve explains why z is not exactly known except for certain one-dimensional 
(1D) models [2-51. Computer simulation is therefore very valuable in providing a non- 
perturbative way of computing z. 

In this paper, we will focus on the 2D king model. Despite considerable amount of 
works over the past two decades (see, e.g., 16, 7, 24, 261 and references therein), there is 
no universal agreement on its precise value. We are not going to give a comprehensive 
review on its present status, but merely to recall that its estimate varies widely: for instance, 
from 2.076 It 0.005 to 2.34 It 0.03, deduced respectively from magnetization relaxation via 
Monte Carlo simulation [SI and series expansion [7]. These values bracket the commonly 
accepted estimate at about 2.16, obtained mainly by relaxational methods 169, lo]. Recent 
studies using methods of damage spreading also add to the controversy [ 11, 121; they tend 
to favour a large z Fc: 2.3. Since different approaches continue to disagree with each other 
and some even produce mutually exclusive results, as is further evident from several latest 
works [21-261, it is desirable to have as many independent checks as possible. 

Here we introduce a method which uses the power spectra to determine z from simulation 
data. The basic idea is simple: at a critical point, temporal scale invariance implies algebraic 
decay of correlations which is reflected as power laws in the power spectra of fluctuating 
quantities. This approach has been used I131 to rederive z = 4 - q for the spin-exchange 
king model [141 (model B in the terminology of Hohenberg and Halperin [l]), where we 
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analysed the fluctuating average current. For the spin-flip kinetic Ising model [U] (i.e. 
model A [l]), we consider the following spectrum: 

where m is the average magnetization. In terms of the Fourier transforms, we have 

P ( 0 )  = V-'G(k  = 0,o) (2) 

where V = Ld is the volume of the system, and 6 is the correlation function in momentum- 
frequency space 

(3) 
Since 6 ( k ,  0) = k-*+"-'g(k-'w) is established non-perturbatively by dynamic 
renormalization group methods [16, 11, we obtain by requiring 6 to be finite as k -+ 0 for 
finite o 

( f i (k ,  o)&(k', 03)  = Vfm6(k ,  o)&,.+&,-d. 

P(w)  - V-lw-' (4) 

where q? = 1 4- (2 - q)/z. In passing, note that this procedure fails for model B in the 
presence of a discontinuity at k = 0, due to the conservation of m. Thus the simplest 
spectrum to consider is the current instead [13]. 

For finite L and finite &,(=length of time series), we generalize (4) by makimg a finite- 
size scaling ansatz [I71 

P(O, L ,  a) = L - ~ C O - ~ G ( ~ L ~ ,  z,,,L-=). (5) 

Ignoring the argument t,/Lz for the moment, the scaling function satisfies asymptotically 

(6) 
[constant o L 2  > 1 

(OL')' oLZ << 1 

because for 'observation time' rj-' 6: r~ a L', P knows no L (except the trivial overall 
L-d), and in the opposite limit P must be finite: P ( o  + 0, L )  - L2-'+z-d . Th e latter is 
realized if the time series are long enough such that the minimum frequency 2x f t, 6: L-'. 
Equation (5) can also be rewritten in the equivalent form 

(7) 
Now we discuss the effect of t,,,/Lz in G or 6 above, which is introduced on dimensional 

ground. In principle, unless this argument is kept constant, data for different L will not 
collapse in a plot of L-2+'-zid P versus oL', so there will be no such simple visualization 
of dynamic finite-size scaling. In practice, since we expect G to be analytic in the limit 
G(oL*,  tm/Lz + m), the effect of fm/Lz  is negligible for sufficiently long time series. 
This is possible for small L,  but not so for larger L, as the length r,,, is increasingly limited 
by computing power. 

 we have done Monte Carlo simulations for the ZJJ Ising model at the critical point, on 
a periodic square lattice, using single spin-flip algorithm [15]. Figure 1 shows the power 
spectra for the magnetization, where t,,, = 32768 for L < 64, 4096 for L = 80 and 
2018 for L = 128. The data represent averages over IO00 runs to ensure good statistics. 
From the slopes of these curves, we immediately get z (see figure 2). The best estimate is 
z = 2.13 f 0.03 from L = 128. Including errors, this is somewhat smaller but agrees with 
estimates by relaxational methods [9, 6, 10, 21, 261. 

P ( 0 ,  L ,  t,) = L*+-dG(oLZ, tmL-z) .  
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Figure 1. Lag-log plot of power spectra for magnetization of ZD king model witl'single-spin- 
flip algorithm. f = 42n, system size L = 10, 20, 40, 64, 80 and 128 6om top down. The 
bottom~straight line is for reference. I@ slope corresponds to P = 2.13. 
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Figure 2. Estimates of dynamic exponent I f" the slope of power specfra in fig... 1. using 
equation (4). 

Regarding finite-size scaling, the problem with finite f,,,/Lz mentioned above is apparent 
in figure 3, which shows the systematic effect of varying fm with fixed L. By adjusting the 
relative vertical position of these curves, we find complete overlap. Therefore, aside from 
vertical shifts, the curves with longer t, appear to be extensions of those with shortcr tm to 
smaller frequencies. Since we are not aware of any theoretical prediction for the dependence 
of P on f m / L 2 ,  the above statement will be taken as an empirical observation. For practical 
reason, our main data in figure 1 actually have shorter t, for larger L. To circumvent the 
resulted deviations from simple scaling, a separate reference set of data consisting of shorter 
im were taken withfued tm/Lz.  Then the log P curve for each L in figure 1 was shifted to 
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Figure 3. Finite rm/Lz causes small, systematic shift in P. Data are from multispin coding 
algorilhm. L = 128. and from top to bot”: r, = 64.128,256.512. 1M4 and 2048. 

match with that reference set of data. This corrective procedure effectively suppresses the 
dependence of on tm/L2 in (7). and leads to excellent dynamic scaling, as exhibited in 

4. figure 

- 

Figure 4. Dynamic finite-size scaling for the data that use single-spin-flip algorithm (f” 
figure I). The line of reference has a slope corresponding U, P = 2.13 which gives the best 
overlap. 
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Figure 5. Dynamic finile-si= scaling for L = 16 10 128, using mullispin cnding algorithm. 
I = 2.13 is used. Up to a shifl (equation (8)). the scaling function appears indistinquishable 
from that in figure 4, ipdhting the same universality class. 

Several cmments are in order. first, we emphasize that the deviations prior to 
corrections are very small, and will not be resolved given poorer statistics. Even for 
small cm/Lz where we expect problem, the slope appears to be unaffected (see figure 3) 
so that z can still be extracted. In any case, such a procedure of shifts is unnecessary if 
one only chooses t,,, a’ Lz (with reasonable trial 2). Second, as shown in figure 4, the 
scaling function (? has an inflection point between the two asymptotic limits. This results 
in finite-size effects well before the plateau~is reached. It is the origin of the large errors 
for small L in figure 2. Third, there are expected systematic deviations from scaling for 
data at high frequencies which are not shown in the figures for clarity. Such high-f tails 
tell us precisely where the temporal scaling reghe as described by (5) begins. 

We have also obtained a separate set of @ata using the multispin coding technique 
[19.20], where an entire sublattice is updated at once. As anticipated, the system evolves 
faster 

I C  
(mullispin) - (I-spin) 

ZL - TL 
where numerically we findc = 3.84. The resulted spectra is related to those of single-spin- 

 flip algorithm via a simple rescaling (cf [IS]) 

(8) 

where the prefactor (c-’) ensures the same statics for both algorithms. Other than an overall 
change in time scale, the two belong to the same dynamic universality class and give the 
same estimates of z (see figure 5). 

Our approach has certain advantages: it is clean and precise, giving an estimate of z from 
m s  for one large system size, with no need of extracting rL explicitly and studying its finite- 
size effects. Furthermore, the derivation works for quantities in addition to magnetization. 
For example, one can show that the spectrum for the mean energy also obeys (5) but with 

(0, L, tm) = c - ~ P ~ ’ - s p ’ ” ~ ( ~ / c ,  L; Ct,) pW“ispin) 
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+I = 1 + a / v z .  Of course, the 2~ king model is a special case here because the fluctuation 
of energy is logarithmic, and it is not clear how logarithmics should be incorporated into 
the finite-size scaling ansatz. Nevertheless, we get fine data collapse analogous to figure 4, 
with a = 0. This altemative will be usekl for models where a/w, instead of q = 2 - y / u ,  
is available. Finally, since our method relies only on the validity of the scaling form for 
correlation functions (below equation (3)). applications to higher dimensions and to other 
models are immediate, investigations already being under way. 

In conclusion, in parallel to the treatment for conserved order parameter [13], we have 
shown how the exponent z can also be determined precisely by power spectra for the case of 
non-conserved order parameter. Using the 2D G1aube.r Ising model as an example, we find 
z = 2.13 2~0.03, somewhat smaller but in agreement with those obtained by the relaxational 
methods [6,9, 10,21,26]. Thus an intermediate value among current estimates is favoured. 
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Note added. After the completion of this work, we received a preprint by Iauritsen and Fogedby [27], who have 
used the same method to compute I for the w and 3D King models. Although lheir statistics are insufficient to 
show the correction of scaling from the presence of fm/Lz, their estimate for the w king model is consistent with 
om. They have also analysed power spectra. for certain models of interface p w l h  and sandpiles, and obtained 
some useful scaling relations. 
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